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Abstract

A method of the superposition of a hybrid and displacement approximation was developed to provide the accurate
stress fields in a multilayered composite laminate, including the singular neighborhood of the ply interface and the hole
edge. Asymptotic analysis was used to derive the hybrid stress functions. The displacement approximation is based on
the polynomial B-spline functions. The method provides the determination of the coefficient of the singular term along
with convergent stress components including the singular regions. Reissner’s variational principle was employed. Simple
[45/-45]; and quasi-isotropic IM7/5250 [45/90/-45/0]; laminates were analyzed. Uniaxial loading and residual stress
calculation (quasi-isotropic laminate) were considered. A convergence study showed that accurate values of the coef-
ficient of the singular term of the asymptotic stress expansion could be obtained with coarse out-of-plane and in-plane
subdivisions. The interaction between the singular terms on the neighboring interfaces was found to be important for
the convergence with coarse subdivisions. Converged transverse interlaminar stress components as a function of the
distance from the hole edge, were shown for all examples. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Composite; Laminate; Open hole; Singularity; Asymptotic solution; B-splines; Hybrid approximation; Reissner’s
variational principle

1. Introduction

Development of the methods, for an efficient stress analysis of the composite structures containing
curvilinear edges such as cutouts, etc., is of significant practical interest. Ply level models of the laminated
composites, according to which a lamina is modeled as a homogeneous orthotropic material, result in a
singular stress behavior in the vicinity of the ply interface and laminate edge. The present article deals with
a three-dimensional elasticity analysis in the presence of the singular stresses and focuses on representing
the stress field by using a superposition of the asymptotic solution and polynomial spline approximation.

A valuable experience was gained due to considerable effort devoted to the solution of the straight free
edge problems. A hybrid approximation, based on an assumed equilibrium stress field was proposed by
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Pagano (1978a,b) using Reissner’s variational principle. Without including the precise singular stress terms,
highly accurate stress predictions for various laminates were demonstrated. The singular term of the as-
ymptotic solution for the composite wedge near the ply interface and the wedge edge was obtained by
Mikhailov (1979). The power of singularity was determined as a function of ply anisotropy and wedge
angle. Independently, Wang and Choi (1982) constructed an infinite series elasticity solution for the same
problem based on Lekhnitskii’s complex variable stress function. The singular stress term was precisely
determined. A polynomial particular solution was added to satisfy the axial loading condition. Determi-
nation of the unknown multiplicative factors in the homogeneous solution, including the coefficient of the
singular term, was accomplished by the boundary collocation method. The results for a [+45]  laminate
were shown to converge using 30 eigenfunctions of the homogeneous solution. A hybrid finite element
formulation (Tong et al., 1973) based on this solution was developed by Wang and Yuan (1983).

Folias (1992) and Wang and Lu (1993) considered stresses in laminated composites at the interface and
the open hole edge. They showed that the zeroth order term of the asymptotic expansion of the three-di-
mensional elasticity equations in terms of the parameter . = A/D (ply thickness/hole diameter) yields a two-
dimensional elasticity problem. Thus, the singular stress term at the ply interface and the curvilinear edge is
the same as that for the straight edge, provided the ply orientations are the same, relative to the tangent to
the curved edge. However, extending these results to obtain a full-field solution is not trivial. The critical
difference is that, the analytically obtained eigenfunctions of the asymptotic two-dimensional field do not
satisfy the three-dimensional equations in any finite volume. Thus, no exact homogeneous solution is
constructed in a finite volume surrounding the intersection of the hole edge and the orthotropic ply in-
terface. It should be noted that an impressive convergence of the hybrid singular finite element formulation
was demonstrated (Tong et al., 1973; Wang, 1983) for problems, where the assumed stress functions in
relatively large singular elements actually provided elasticity solutions over the entire element. An assumed,
displacement based finite element formulation including the singular asymptotic term was developed by
Wang and Lu (1993), and the stress intensity factor for a £45 laminate was obtained as a function of the
circumferential coordinate. However, insufficient information was given to allow one to comment on the
rate of convergence. It was noted that the asymptotic solution was included in the formulation only over a
small region near the free edge of the cutout.

Iarve (1996) developed a B-spline based approximate three-dimensional solution for the multilayered
composite laminates containing open holes. It was also shown that a two-dimensional problem (with 0 as a
parameter) identical to the one obtained asymptotically in Folias (1992), and Wang and Lu (1993) follows
from the three-dimensional formulation assuming vanishing of the spatial derivatives in the circumferential
(0) direction. The numerically obtained stress distributions near the hole edge were compared to the stresses
given by the singular term of the asymptotic solution. At the singularity, the polynomial spline approxi-
mation does not capture the directional non-uniqueness of the singular stress functions, Pagano and Kaw
(1995), and resulted in an interfacial traction discontinuity. However, it was observed that the singular term
of the asymptotic solution with appropriate coefficient and constant additive terms matched the full-field
spline solution at approximately one half-ply thickness from the singular point. The surprisingly large area
of agreement suggests that superposition of the singular term and the polynomial approximation, may be
utilized for the determination of the stress intensity factor.

Morley (1969, 1970) pioneered the idea of superposition of the analytical and finite element solution in
the problems with local field singularities. His approach is based on the Rayleigh-Ritz method where the
polynomial displacement approximation is enriched through the entire domain, by the local analytical
(asymptotic) solution minus its finite element approximation. The analytical solution must satisfy the field
equations and the homogeneous boundary conditions of the problem. The finite element approximation is
obtained under the boundary conditions generated by the analytical solution with unit stress intensity
factor. For sufficiently fine meshes, the analytical solution and its approximation will differ only in the
vicinity of the singular point. The scaling factors, which are the coefficients of the additional terms used for
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enrichment of the finite element basis, are obtained through a variational procedure. Yamamoto and
Tokuda (1973) applied this method to crack stress intensity factor determination, using a multiple term
asymptotic expansion for the analytical solution. They used a boundary collocation method to obtain the
coefficients of the terms containing analytical solutions.

For the curvilinear edge singularities considered in the present article, the analytical solution in the
finite domain near the singularity is unknown. The asymptotic solution obtained in (Folias, 1992; Wang,
1993; Iarve, 1996) is a two-dimensional solution in nature and cannot be used directly in the approach
described in Morley (1969, 1970) and Yamamoto and Tokuda (1973). It should be mentioned that
Yamamoto and Sumi (1978) considered an axisymmetric problem of a twisted round isotropic bar with
an annular crack. The asymptotic solution, which was used as the basis for the analytical solution near
the crack tip, was equivalent to a local plane strain solution which did not satisfy the axisymmetric
equilibrium equations throughout the domain. The asymptotic solution for the round isotropic bar
problem, which was reduced to a single unknown function — the circumferential displacement component
— was augmented by a higher-order term added to the asymptotic solution to satisfy the equilibrium
equations. However, in a general orthotropic case, these complementary terms are not obvious and have
not been reported in the literature.

The present article extends the superposition approach to problems where no analytical solutions in the
finite domain are known. The model developed is based on Reissner’s variational principle and is intended
to reflect the singularities, which arise at each interface at the boundary of the hole. The hybrid approxi-
mation functions to be developed, have the following characteristics:

(1) They include the asymptotic solution thus representing the directional non-uniqueness of the solu-
tion. It is only in this manner that one can embed the proper singular field. The fact that the asymptotic
solution results from the three-dimensional problem by truncating the spatial derivatives in the circum-
ferential direction (Iarve, 1996) will be used to construct hybrid stress functions.

(2) Two independent (B-spline) displacement functions are considered: One is related to the regular and
the other to the singular portion of the stress field. It is undesirable to use the asymptotic displacement
functions in the displacement approximation because, the calculation of their derivatives in the circum-
ferential direction, required in the variational formulation, is only possible numerically. It is assumed that
the displacements related to the singular stresses will also be approximated with splines. Thus, the ap-
proximations of stresses and displacements are made independently.

Examples to demonstrate the convergence with respect to meshing parameters will be considered.

2. Problem statement

Consider a rectangular N-layer laminate built of orthotropic layers with length L in the x-direction,
width 4 in the y-direction, and thickness H. Individual ply thicknesses are /i, = z?) — z?~D_ where z = zI?)
and z = z*~1) are upper and lower surfaces of the p-th ply, respectively. The origin of the x, y, z coordinate
system is in the lower left corner of the plate, as shown in Fig. 1. A circular opening of diameter D with the
center at x = x. and y =y, is considered. Uniaxial loading is applied via displacement boundary conditions
at the lateral sides (x = 0,L):

7ux(07y7z) = MX(L,y,Z) = Uo, uy(ovyaz) = uy(Lay7Z) =0. (1)

The transverse displacement is not constrained aside from a rigid body constant, and the respective
traction 7, =0 is prescribed. The edge of the opening is a part of the traction prescribed loading boundary
Sr, so that

oin; = T;'(X,'), X; GST,
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Fig. 1. Plate with the hole and coordinate systems.

where tractions 7; are known. Indices i,j = 1,2,3 correspond to the directions x, y, z, respectively. The
lateral edges y = 0,4 and the surfaces z = 0, H also belong to S7. The constitutive relations in each ply are
as follows:

0 = Chyy (e — ofy AT),
where C7;; and o, are elastic moduli and thermal expansion coefficients of the pth orthotropic ply, and AT
is the temperature change. A cylindrical coordinate system r, 0, z with the origin at (x., y., 0) is introduced
x = rcosf + x, y=rsinf + y, z=72z.
According to the asymptotic analysis performed in the earlier articles (Folias, 1992; Wang, 1993; Iarve,

1996), the stresses in the vicinity of the hole edge and the interface between the p and p + 1 plies are thought
to be of the form:

ZK n*~'f,;(, 0) + bounded function.

The first terms represent the unbounded (0 < Re(1) < 1) singular stress terms, where # and ¢ are local
coordinates introduced in the cross-section 8 = const (Fig. 1b) according to equation

neosy =r—D/2, nsiny =z — 2%, (2)
The asymptotic solution is normalized similar to (Wang, 1993) so that
K,(0) = lim['~*0.(D/2 + n cos, 27, 0)].
n—
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The singular term,
ay =" fy (¥, 0)

is a solution of the asymptotically derived two-dimensional problem and satisfies neither the three-di-
mensional equilibrium nor the compatibility equations in any finite volume around the curved boundary.
However, it does satisfy the traction-free boundary conditions on the hole edge as well as the interface
continuity conditions in the limit # — 0. We shall consider one singular term at each angular location, at
each interface at the open hole edge, with the extension to an arbitrary number of terms at the same
singular point being straightforward. The displacement components and the bounded portion of the
stresses will be approximated by using cubic spline functions, and Reissner’s variational principle will be
applied in order to obtain K,(0) and the unknown spline approximation coefficients. The asymptotic so-
lution near the orthotropic ply interface and the hole edge will be considered next.

3. Asymptotic solution

Consider a region around the hole edge and the interface between plies p and p + 1. A local coordinate
system #, ¥ is introduced in the radial cross section 6 = const according to Eq. (2). In this coordinate
system 0 <y <7/2 in the upper ply and —n/2 < <0 in the lower one.

For an arbitrary function F,

oF oF
—=AF, —=AF
o N e MY
where
oF 1 oF . OF . 1 0F
AF = —cosy —— — siny, A, F = — sinyy +— — cosy.
F=ay o Ty Y AT Ay
In Cartesian coordinates, the derivatives can be calculated as
oF sinf oF
— = NAF — ——m———— —
o S AE = oSy 30 -
oF cosf oF
— = (sinOAF + ——— —.
oy SO 4 oSy 30

If # — 0, then the first terms in the right-hand side of both Egs. (3) are of the order /5 and the second
terms are of the order F. Thus, for small #, the expressions for derivatives (3) are truncated by retaining
only the first terms, so that

oF o (6F> —a—FCOSB:A,Fcosﬂ,
0

ax  \x /), or
oF oF oF . .
> = (5)0 :§sm9: AFsinf, n—0, (4)
oF oF
A :_:AnF7
(62>9 0z

where the notation ( ), implies truncation by deletion of the 6 derivative. Although these equations are
exact in the limit # — 0 only, we shall use these derivatives through a finite volume to construct the hybrid
approximation. Under these assumptions, the Navier equations of a given ply will simplify to
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Uy
(AAA, +BAA, + CAA) | uy | =0,

U;

where the 3 x 3 matrices A, B, C are given in the appendix and depend upon the elastic moduli and 0. Note
that the thermal expansion coefficients do not enter these equations due to the assumption of a uniform
temperature change. The solution of the Navier equations can be found in the form:

;= ol (0,9, 0) + U (n,1,0),
A

where U’ (1, 0) is a particular solution and >, v/ (n*,, 0) is the homogeneous solution.

Non-homogeneous boundary conditions resulting from non-zero prescribed tractions or thermal mis-
match can be satisfied with a piecewise polynomial particular solution of appropriate order, provided that
the prescribed tractions are smooth and bounded within the ply though perhaps discontinuous at the in-
terfaces. The thermal expansion strains are not present for the homogeneous solution and will be deter-
mined in a particular solution. We shall be interested in the homogeneous solutions v/, which have
essentially non-polynomial format, and the respective tractions satisfying homogeneous boundary condi-
tions. The homogeneous solution of the displacement field can be written as (Iarve, 1996)

6
of = 0"y ypedi(sing + pf cosy)’,

k=1

where the superscript p refers to the ply number. It will be understood that coefficients g, and vectors {dj;}
are constants for each ply; therefore, the superscript is subsequently omitted, unless needed for clarity. The
stresses from the homogeneous solution are

ov? ov?
p—cr (%% v
Gijciikl<(axl>9+ <6xk)0>’

where the truncated derivatives are calculated by using expressions (4). The expression for the stresses may
be written in the form,

6

- o -1

ol = ! E ykc?j:p(smlp + e cosy) .
=1

P

Cocflicients cf‘j , defined in Iarve (1996), depend upon elastic moduli of the pth ply. It was taken into ac-

count that the following relationship applies for the differential operators:

6
A = ;“n)V7lekdkiﬂk( siny/ + p, cos lﬁ)/'_l’
k=1

6
Anvip = ;“n)ﬁlzykdki(Sinlp + ﬂkcos‘//>kly

=1

which leads to the following characteristic equation for obtaining p,:
det[Ay; + By, +C] =0,

where {d;;} are eigenvectors of the characteristic matrix:

dkl
dk3
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The power 4 and coefficients y; are defined from the boundary conditions of displacement and traction
continuity at the interface between plies p and p + 1

Y=0: v/(1,0,0) =0"(5,0,0), ¢5n0,0) =d"(n00), i=xyz,

p4)

and the traction-free boundary conditions imposed at the hole edge:

A (n,g,e) -0, i=r0,z

05(17, —E,O) =0, i=r0,z
2

Non-trivial solutions of the homogeneous boundary value problem exist for discrete values of A only.
Coeflicients y; are obtained to satisfy the interfacial and hole edge boundary conditions.

We shall be interested in the solutions when 0 < Re(4) < 1. These terms provide unbounded stresses,
which dominate the solution for small 7. In the context of the present work, laminates with more than one
interface will be considered, and the singular asymptotic terms will be used at each interface. For conve-
nience, we will introduce an analytical continuation of the asymptotic displacements into all plies of the
laminate. Thus, we extend the definition of the displacement vector v/ and stress components a;; for the
asymptotic solution associated with interface z(*) between plies p and p + 1 depending upon the properties
of the ply in which  is located '

6
WS ydl (sing + 1 cosy)’, Y >0,
=9 e | (5)
S vedl(siny + il cosy)’, ¥ <0
k=1
and
6 .,
I A (sing + i cosy) T, >0, g=p+1,... N
ai‘j’- = kzl 297D Lysing + 2P < 29,
_ ) . -1
z#l;nﬁﬂmw+wﬁmw>, ¥<0, g=1,....p
k=

(6)

These functions are defined through the entire laminate thickness. The stresses a/; are calculated from
strains defined by the truncated derivatives of displacements v using the elastic moduli of that ply where
the stresses are evaluated. The asymptotic solution obtained between plies p and p + 1 will provide a non-
zero stress contribution in a large area surrounding the singular point due to the weak character of the
singularity 4 — 1 =~ —0.05 (Mikhailov, 1979; Wang, 1982; Folias, 1992; Wang, 1993; Iarve, 1996) between
similar orthotropic layers with different fiber orientations.

4. Variational formulation

Displacement components are represented as

w =+, )

! Note that we have refrained from using indices on the variables 5 an y since they always emanate from the singular point at
z=2z), Also, / has been given no subscript as we only use the lowest possible value at z=z(").
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where the displacements u; satisfy boundary conditions (1). The term u; is associated with singular stress
components and the second term u; with bounded stress components. The stresses will be assumed as

i (8)

The stresses o ® and displacements u; are independently assumed. The stresses o}, and displacements u; are
related as follows

oy = Cly(u ) — o AT), 9)

7]

hyb
oy —ay + 0o

where C};, and of, are elastic modulii and thermal expansion coefficients of the gth orthotropic ply, AT is
the temperature change, and

1 614,' al/lj
U(ij) —E(ajfaxi)- (10)

Reissner’s variational principle 6R = 0 is employed, where the functional R is given by equation

/// 0-1/7AT +61/ ’J dV // TI/I, (ll)
St

-1
®(0y, AT) = 18%,,6,0u + 0,0, AT, {S;'jk,}z{c;;k,} .

Substituting Eqgs. (7) and (8) into Eq. (11), one obtains after algebraic manipulations and use of Betti’s

law:
hyb hyb ¢ s r K}
/// uy, >+‘7y )fW(”o‘j)’O)} dV+///VW(”W)*”(A/‘)’AT)dV
—// T:(u} + u})ds, (12)
Sr

W (e, AT) = 3Ci (e — o AT) (e — oy AT).

where

The goal of the formulation is to treat problems when the external tractions 7; and/or the interfacial
tractions can not be approximated pointwise by using the same shape functions as the displacement
components or their derivatives. Let the functions X,, be the basis functions for approximation of the
displacements u; and the functions Y, those for the displacements ;. Then, the following systems of
equations will be obtained by taking the variations with respect to the unknown approximation coefficients:

/// Chi (W r) — ak/AT)+Cz/k1”<k1]Xm/dV // TX, dS,
/// i (1 kl_“k/AT)+‘7hyb Y, dV = // 1Y, ds.
St

Both sets of basis functions X,, and Y,, in the present context are of the same piecewise polynomial nature.
Without restricting the generality, one might assume that they are the same. Indeed, one might always
redefine the systems of basis functions {X,,} and {Y,,} as {X,} U {Yn}. In this case, the equations can be
rewritten as

/ / /V (Gl + 1y — ATS) | X,V = / /S 1.X,,dS, (13a)
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//ﬁ[C?ikluik‘l)})(m’jdlf://-/Vo'gbem,jdV. (13b)

Integrating by parts and adding the equations to each other, one obtains

/// Uklukl T+ af‘,y,b X dV—|—//S ,,kz ) — AT of) + Uzl‘l/yb)”j]deS =0.

The first term of the above equation contains the weak form of the equilibrium equations and the second
term, the weak form of the boundary conditions. They are interconnected, meaning that if the boundary
conditions are not satisfied in the weak form,  then the error in the equilibrium equations will not vanish
even in the weak form, i.e. it will not be orthogonal to each of the displacement approximation basis
functions. In Section 5, a form of a, y ® will be proposed so that the boundary conditions on the hole edge
and the interfacial continuity conditions, will be satisfied. In this case, provided that Egs. (13a) and (13b)
are also satisfied, the stresses (8) will satisfy the equilibrium equations in the weak sense, even in the vicinity
of the singularities.

5. Hybrid approximation

Consider the exact stresses associated with the displacement «! in the gth ply:

oy = Cz{‘_]/klus(‘kﬁl)'
The thermal expansion term is not included with the singular displacement portion, since it was accounted
for in Eq. (9). The stresses resulting from displacement field «; are modified to include the singular asymp-
totic stress field (6). We shall calculate the strain field generated by the truncated derivatives of the dis-

placements, as follows:

AN
(e o /, x; /),

where (auf / ij)9 are calculated according to truncated expressions (4). The contribution of the stresses
generated by these strains is given by the asymptotic stress field (6), so that the hybrid stresses associated
with displacements u} are

hyb + ZK — sij,

where
Sij = 7jkz”f/az)(,~ (14)

The unknown functions of the hybrid approximation (7) and (8) are the displacements u!, ] and coefficients
K,. Practically speaking, we expect the hybrid approximation to be needed only in the vicinity of the hole
edge. The size of this region is a solution parameter. In the superposition context, it is intuitive that its size
needs to be sufficiently large so that the spline approximation would be capable of approximating the
asymptotic term accurately on the outer (with respect to the hole edge) boundary of this region. A nu-
merical study will be performed to illustrate the insensitivity of the results to the size of this region. Let the
volume I" be bounded by the hole edge, the top and bottom surfaces and » = ry: D/2 < ry < min(L,A4).

2 The error is orthogonal to each of the displacement approximation basis functions.
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Inside this region stresses are given by Eq. (8), and outside this region u; = 0 and ¢;; = oj;. The total dis-
placement must be continuous at the internal boundary r=r,. It can be satisfied easily 1f the unknown
displacement approximation functions are the total displacement u; and u! instead of u] and u;. The stress
approximation (8) can be rewritten accordingly:

N-1
oy = ol + Y _Ky(0)al — sy, (15)
p=1
where
U?j = C?jkl(u(kyl) — o, AT). (16)

6. Governing equations

Taking into account Egs. (15) and the change to independent displacement functions u; and u;, Eqgs.
(13a) and (13b) will attain the following form:

/ / /V [l — AT X, ¥ = / /S 1.X,,dS, (17)
N—-1

///F {CZ/(IMZM)(,}X”UWCIV:///FZKP(Q)alI/)X’”X/WdV’ (18)
p=1

where X,, o are based on truncated derivatives (4). Eq. (17) follows from Eq. (13a) after substituting Eq. (7)
and allows one to calculate the total displacement in an independent problem under the given traction and
displacement boundary conditions (1). Several steps have been undertaken to reduce Eq. (13b) to Eq. (18).
It has been considered that the hybrid approximation is defined inside I only and that truncated deriva-
tives (4) were used in the hybrid stress approximation. The spatial derivatives appearing in Eq. (18) are
also truncated derivatives, meaning that auxiliary problem (18) is a two-dimensional problem with the
0-coordinate as a parameter. A substitution

N-1
S S
u; = E Kyu;
p=1

provides a solution of Eq. (18) for arbitrary K, if

///r{ijkluf;f,na})(n,jwdl/:///ra,-’;Xm‘,de, p=1,.. N—1 (19)

The displacement boundary conditions on the singular components »;” must exclude rigid body motion
and be consistent with Eq. (5), i.e. no surface displacements can be prescribed for u;” on Sy Nor. Eq. (19)
provides the weak form of the equality of tractions a;n; and C}, ]k,u(k ), on the portion of OI" inside the
laminate (r=ry), provided that no surface dlsplacements are prescrlbed for u;” there. If the distance be-
tween this boundary and the hole edge is chosen sufficiently large then the resulting traction discontinuity at
this boundary for the stress field (15) may be reduced arbitrarily by increasing the numerical subdivision for
the auxiliary problem. The following boundary conditions, consistent with Eq. (5), were imposed

u?(D)2,29,0) = u’(D/2,2%),0) =0,  w(ry,2",0) = 0. (20)

The stress approximation after the substitution can be rewritten as
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N-1
oy =0+ Y _K,(0)(af —s]), (21)
p=1
where
p _ q SAp
Sij = ijk/u(i‘/)()'

7. Determination of k,(0)

The error in boundary conditions near the singularity from Eq. (17) is a result of approximating the
directionally non-unique singular stress field by polynomials. The directional non-uniqueness means that
for n — 0, the stresses a;; may tend to +oo depending upon . The polynomial approximation provides
unique and finite stress values at every point of a given ply. The values of the stress intensity factors are
obtained to enforce singlevaluedness of the non-singular portion

N—-1
ol — Ky (0)s+ 3K, (0)(a) — 55)
-
at the singular point. Consider the interface z =z between the p and the p + Ist ply. Let Pi(p)(n) be the

interlaminar traction on the interface z =z in the vicinity of the edge (P’(0) = +o0). Then, at the hole
edge, six traction boundary conditions have to be simultaneously satisfied

I, = O'ijnl? P'(p)(”) = aij”ﬁ')'

J ) 1

Thus, one stress component, namely a,., will appear in two equations which are
I, = arz(ﬂaiga0)7 Pr([’)(l,,) = Grz(naoﬁe)'

These equations can only be satisfied if

. T .
lim | 7. — K,(0)a (n.5.,0) | = lim [P, — K,(0)a.(1.0,0)]

D D
_ ggz(?zw,e) _Kp(e)sg(?zm(;)

. a(D (P
Jr;Kq(G){aij(E,z ,9>sij(§,z ,0)} (22)

q9#p

These equations are necessary conditions to make the polynomial part of the stress tensor single valued. It
is worth noting that if instead of a corner one has a crack, i.e. n" = —n/, then we shall have three pairs of
single-valuedness conditions, one per each stress component in the plane normal to the crack. It will require
three stress intensity factors: Modes I-III. In the case of a hole edge, we have only one interlaminar stress
component which requires the single-valuedness condition — o,.. The criterion for determining K,(6) will be
the continuity of the non-singular part of o,. stress component at the singular points, i.e.
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aop(2.20.0)] = ksl 2.40.0)]

N-1 D D
—i—ZKq(Q)A[a;’j(i,z(”),O) —s;;(E,z@),e)], p=1,...,N—1, (23)

q7p

where A[ | denotes the difference of the bracketed function between z?) + 0 and z» — 0. The non-
diagonal terms in the right-hand side of Eq. (23) represent the influence of the singularities of adjacent
plies. These terms will become small if the subdivision of the p and p+ 1 is dense as the non-diagonal
terms contain the difference between the asymptotic solution and its polynomial approximation away
from the singularity. However, for coarse subdivisions, the contribution of the adjacent plies is significant
for convergence.

8. Spline approximation of displacement components

The x, y and z displacement components are approximated by using cubic spline functions in curvilinear
coordinates. The total displacement is approximated as

u; = CXUT + 6,upXET, (24)

where X is a vector of three-dimensional spline approximation basis functions, and U; are the unknown
spline approximation coefficients. The non-square matrices C; and constant vector E are defined so that
approximation (24) is kinematically admissible, i.e., it satisfies boundary conditions (1) for arbitrary co-
efficients U;. Bold type will be used to distinguish vectors and matrices; superscript T means the transpose
operation.

A detailed description of the spline approximation procedure and the properties of spline functions are
given by larve (1996). The three-dimensional spline approximation functions are defined in curvilinear
coordinates. The x,y plane was mapped into a region defined by p, ¢, where 0 <p <1 and 0< ¢ <2n. The
transformation was defined as follows:

=2 Fi(p)cos + LEx(p)a(d) + 3.

v =S Filp)sing + AB(p)B(@) + .

Functions F) and F, were defined as

1+Kp7 pgplﬁ 0’ pg[)h’
Fl(/)) = { (I+xpn)(1—p) O < 0 < 1, FZ(P) =\ P=fn P < 0 < 1.

1—py ’ l=py?

Coordinate line p = 0 describes the contour of the hole, and the coordinate line p = 1 describes the rect-
angular contour of the plate. Parameter « defines the size of a near-hole region D/2 < r < (1 + x)D/2, which
corresponds to 0 < p < p,,, where a simple relationship between the polar coordinates and the curvilinear
coordinates p, ¢ exists

D D
r—5=7"p and 0= ¢. (26)
The width of this region is typically one hole radius, i.e., kp,, = 1. Beyond this region a transition between

the circular contour of the opening and the rectangular contour of the plate is performed. Functions o(¢)
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and f(¢) describing the rectangular contour of the plate boundary were given by larve (1996). These
functions are introduced so that parametric equations x = a(¢p) + x., ¥ = f(p) + ». describe the rectan-
gular contour of the plate, and 0 < ¢ < ¢V corresponds to 0 < x<L, y=4; ¢V < ¢ < ¢? corresponds
tox=0, 0<y<4; ¢¥ <¢p < ¢ corresponds to 0 <x <L, y=0; and ¢ < ¢ < 21 corresponds to
x=L 0<y< 4.

Sets of one-dimensional cubic spline functions were defined in each coordinate direction. Subdi-
visions were introduced through the thickness of each ply such that the pth ply, which occupies a
region z) <z<zP Y, is subdivided into n, sublayers. A set of N, = ZLI n, +2N + 1 basic B-type
cubic spline functions {Z,-(z)}?ﬁ1 with variable defect was built along the z-coordinate according to a
recurrent procedure given by larve (1996). These cubic splines are twice continuously differentiable at
all nodal points inside each ply and have discontinuous first derivatives (the function itself is con-
tinuous) at the ply interfaces to account for interfacial strain discontinuities. This is a necessary con-
dition for traction continuity at the ply interfaces. Nodal points are also introduced in the p and ¢
directions as follows: 0 =p, < p; <---<p, =1, 0=¢) < ¢, <--- < ¢, =2n. The subdivision of the
p coordinate is non-uniform. The interval size increases in geometric progression beginning at the
hole edge. The region 0< p < p, wherein the curvilinear transformation is cylindrical is subdivided
into m intervals (m; < m), so that p, = p,, . Sets of basic cubic spline functions {R,-(p)};";f, {<D,-(¢)}f;’13
along each coordinate are built so that twice continuous derivatives in each node are provided.
Splines along the ¢ are periodic at the ends of the interval. The vector of the three-di-
mensional spline approximation functions was defined as the tensor product of three one-dimensional sets
of splines:

(X}, =Ri(p)@i(d)Zi(2), q=1+( =N+ ({—-1Nk, I=1,....N;, j=1,....k,
i=1,...,m+3.

The components of vector E are equal to 1 or —1 for a component of X that is non-zero at
p=1 ¢V<p <P (x=0)and p=1, ¢ < < 2r (x=L), respectively. All other components of the
vector E are equal to zero. The boundary matrices are obtained by deleting a number of rows from the unit
matrix. The deleted rows have non-zero scalar product with E.

The region I" of the hybrid approximation superposition is inside the region in which transformation (25)
coincides with Eq. (26). The boundary r =17, is defined to coincide with the radial coordinate line so that
ro = (D/2)(1 + xp,, ), where my < m;. A reduced set of splines in the p-direction {Rj(p)}?:‘l+ is defined only
over the first /1, intervals for the purposes of efficient solution of the systems of equations for determining
u;”. Tt is built exactly the same way as the one over the entire interval. It can be shown that the reduced set is
a subset of approximation (24).

The approximation of the singular displacements can be written as

u? =X, (27)
where U?(0) are unknown coefficients and
X}, =Ri(p)Zz), q=1+(GE-DN, I=1,....N, j=1....k i=1....m+3.

Matrices C?’ are defined to satisfy boundary conditions (20). The truncated in-plane derivatives in Eq. (19)
are calculated as

g *icosqﬁi ° *isinq,’)i
&), Dk op’ ), Dx op’
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9. Numerical results
9.1. [45]-45]; laminate

A square [45/-45]; plate similar to that in Wang and Lu (1993) is considered. The geometric properties
are L=4=0.508 M, x. =y.=L/2,D =0.0508 M, and ply thickness /#=0.00254 M. Orthotropic ply
properties were £} = 138 GPa, E, = E; =14.5 GPa, G|, = G35 = G»3 =5.86 GPa, and vj; = vi3= vy3= 0.21,
where index 1 corresponds to the fiber direction, and v;; the poisson ratio meaning strain ¢ under uniaxial
stress ¢; in contracted notations. The displacement boundary conditions (1) were applied so that
ug/L = 0.001. The average applied stress was calculated as

1 A H
gy = E /(; /0 Gxx(Layvz) dde

Several modes of subdivision were used for the convergence study. The 0 coordinate in all cases was
uniformly divided into 48 intervals. The coarse mesh was chosen so that

z-coordinate: ns=1 — one sublayer per ply.

p-coordinate: a total of m =12 intervals, with m; =8 intervals in the cylindrical transformation region,

which was a hole radii wide (kp, = 1). The consecutive interval length ratio was ¢=1.2, where

q=(pis1 — Pi)/(P; = Pi1)-
The fine subdivision was as follows:

z-coordinate: ny =4, non-uniform sublayers per ply, sublayer thickness ratio 1.3 with thin sublayers at the

interface.

p-coordinate: m=24, my=20, kp, =1, g=1.4.

First, the influence of the width of the region I' on k() is investigated. The coarse mesh was considered.
The width of the region m;, was changed from 1 to 8 int. The K(0)/ay, in units (0.0254 M)1=#(9) | obtained
by using Eq. (23) is shown in Fig. 2a for my=1,2,8. Starting with m, =2 the K(6) values are practically
unchanged. It should be noted that the minimum value even for m, =1 differs from the value obtained for
mg = 2 by less than 5%. In all of the following results my = 6. Fig. 2b illustrates the influence of the density
of subdivision on the K(0) values. The results obtained with coarse and fine subdivisions are very close. A
fairly close, but not precise, agreement between the present results and Wang and Lu (1993) also shown in
Fig. 2b, is observed.

Stress values obtained by using the hybrid approximation will be illustrated below. The stresses ¢,. and
o in the cross-section 0 =90° will be considered at the interfacial surface. The shear stress ¢, distribution
calculated from the total displacements by using Eq. (17), is shown in Fig. 3a for two different subdivisions.
For distances from the hole edge smaller than 0.2H and 0.8H for the finer and coarser subdivisions, re-
spectively, the shear stress is discontinuous at the interface. Mesh refinement will further shrink the distance
at which the discontinuity is evident; however, the stress values at the hole edge on the two-ply surfaces will
diverge even more. This behavior is readily understood by examining the asymptotic stress functions in
Fig. 4, after which we will return to discuss Fig. 3b.

Functions a;;(1,y,90°) are shown in Fig. 4, where the coordinates are (17, {, 0). Two ordinate scales are
utilized due to a difference in magnitudes of the a,,, and a4 functions and all other functions. The angular
distribution of the shear component a,.(1,,90°) satisfies the zero traction boundary conditions at the hole
surfaces y = £m/2 and the continuity condition at the interface yy = 0. In addition, the stress amplitude
along the interface is zero, not infinite, if the singular point is approached in this direction. At
—n/2 < <0 and 0 <y < /2, however, the same stress component is unbounded at the singular point
and tends towards —oo in the lower ply and +oo in the upper ply. The directional non-uniqueness of
the solution is reflected by diverging interlaminar shear stress values observed by using the polynomial
approximation (Fig. 3a). The stresses calculated by using hybrid approximation (21) in conjunction with
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Fig. 2. (a) Values of K(0) at the +45 interface versus size of the hybrid approximation region. (b) Values of K(6) for different sub-
division densities and comparison with Wang and Lu (1993).

Eq. (18), are shown in Fig. 3b and clearly indicate convergence with mesh refinement. Note that the stress
displayed in this figure is at the same time the pure polynomial part of the hybrid stress, since
a..(1,0,90°) = 0. Thus, by approaching the singular point along the hole edge, we will again recover the
zero value.

The transverse normal stress component will be considered next. As seen in Fig. 4, it exhibits a prac-
tically constant directional amplitude in the 0 =90° cross-section. The stress values o.. defined through the
total displacement field by using the same two meshes as before are shown in Fig. 5a. For both meshes, no
discontinuity between the stress values in the two plies at the interface can be seen. Thus, the natural
boundary condition — interfacial continuity of the transverse normal stress component, is satisfied quite
accurately. However, the stress values obtained using the coarse and the fine mesh are different in the hole
edge vicinity. Fig. 5b displays the function

K(0)(az. —s..) /o,

which is superimposed with the displacement-based stress value ¢* in Eq. (21). For the fine mesh, it has a
non-zero value only in the very vicinity of the singularity and extends to up to 0.8 H away from the hole
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Fig. 3. Transverse interlaminar shear stress at 0 = 90°.

edge for the coarse mesh. The hybrid stress values o.. for the two meshes are shown in Fig. 5c and display a
good agreement.

The transverse shear stresses 6%, and o,y are shown in Fig. 6a and b, respectively. For this stress com-
ponent, the ¢ results obtained with the two meshes show the smallest difference. However, the hybrid
approximation clearly provides a more convergent solution for this stress component also.

9.2. Uniaxial tension of [45/90/-45/0]; laminate

A [45/90/-45/0]s quasi-isotropic IM7/5250-2 laminate was considered next, where the stacking order is
from the top to the central plane, reading from left to right, respectively. The elastic properties of the
unidirectional ply were E1 =151 GPa, E2 = E3 =945 GPa, G12 = G13 =59 GPa, G23 =3.26 GPa,
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Fig. 6. Transverse interlaminar shear stress at 0 = 90°.

v =0v13=0.32, and v,3 =0.45. The in-plane dimensions of the plate were L=0.29 M, 4=0.076 M,
x.=L/2, y. =A/2, D=0.0125 and the ply thickness #=0.00134 M. Fig. 7 shows the power of singularity
calculated for each interface as a function of the polar angle; it varies for stresses from —0.01 to —-0.077
depending on the angle. Two mesh densities were used for obtaining the coefficient of the singular term
under the uniaxial loading boundary conditions. Coarse subdivision was defined as follows:

z-coordinate-1 sublayer per ply,

p-coordinate-m =12, my =8, kp,, = 1, ¢=1.2,

0-coordinate-48 equal intervals.
The fine subdivision consisted of

z-coordinate-three non-uniform (1:2:1) sublayers per ply,

p-coordinate-m =24, my =20, kp, = 1, ¢g=1.2,

0-coordinate-48 equal intervals.

The coefficient of the singular stress term calculated by using these subdivisions is shown in Fig. 8 at each
interface. The values obtained by using Eq. (23) and the values calculated by retaining only the diagonal
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Fig. 7. Power of singularity versus cylindrical angle at all interfaces of the [45/90/—45/0]; laminate.

terms on the right-hand side of Eq. (23) are compared. For the coarse subdivision, the non-diagonal terms
are very significant, so that the values obtained by neglecting them may even be of a different sign. For the
fine subdivision, the two results are almost identical. Indeed, the magnitudes of the non-diagonal terms are
determined by the accuracy of approximation of the singular stress term by the polynomial approximation
one or more ply thicknesses away from the singularity. The density of the subdivision through the ply
thickness defines this accuracy. The values of the K4, K5 and K obtained with the two subdivisions and
taking into account the non-diagonal terms are close together. Fig. 9 shows the characteristics of the
singular behavior of the interlaminar shear stresses, namely:
lim n'“0.0(D/2 + n,2%), 0) = K,a%,(1,0,0),

n—0

lin(} nli}uo—zr(D/z + 1/’72(17)) 9) = Kpaff‘(l’ O’ 9)’
—

where K, were determined by the fine mesh solution.

Interlaminar stress components at a 6 =60.3° cross-section will be considered in Figs. 10-13. The
transverse radial shear component on all interfaces calculated by using the fine subdivision is shown in Fig.
10. Stresses ¢ are displayed in Fig. 10a. At the 0/-45 and —45/90 interfaces, we observe the typical dis-
continuity of 6%, near the singularity, whereas the interface 90/45 shows a relatively continuous traction up
to the singular point. This is in agreement with Fig. 9c showing very small amplitude of the singular term at
the latter interface compared to the two others at 8 = 60.3°. The stresses calculated according to hybrid
approximation (21) are shown in Fig. 10b. It should be noted that the point closest to the singularity shown
in this figure is » = D/2 + 0.002H. The traction discontinuity is practically indistinguishable within the
graphic resolution.

The transverse normal stresses are examined in Figs. 11 and 12. The ¢* stresses on all three interfaces are
shown in Fig. 11a and b. The difference between the results obtained with two subdivisions are clearly
observed for (r — D/2)/H < 0.6. The values obtained by using the hybrid approximation are displayed in
Fig. 12. In this case, the two subdivisions give practically identical results. We observe (Fig. 8c) a small
absolute value of K (60.3°) at the 90/45 interface. This led to an inconclusive o.. trend definition based
on Eq. (17) as shown in Fig. 11a. The hybrid approximation in Fig. 12a shows that this interface is in
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compression along with the 0/—45 interface. The —45/90 interface exhibits a tensile peel stress singularity,
which is in agreement with Fig. 8.

The 0,y obtained by using the hybrid approximation with the two subdivisions are shown in Fig. 13 for
completeness. The fine and the coarse subdivision provide a very close agreement in the stress values which
is indicative of convergence.

9.3. Thermal stresses in a [45/90/-45/0]; laminate

The same laminate is considered under a uniform temperature change of AT =-167°C. This temperature
drop is used to approximate the residual stresses generated during the processing cool-down phase. The
displacement boundary conditions (1) are modified so that the edge x = L is released (zero tractions). The
coefficients K, Ks and K4 obtained with the coarse and fine subdivisions described in the previous section
are shown in Fig. 14. Some differences between the coarse and fine mesh analysis results can be seen for low
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Fig. 10. Transverse interlaminar shear stress at 6 = 60.3°.
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values, while all the maximum values are practically identical. The values of the coefficients are positive at
all interfaces in all circumferential directions. Therefore, a tensile peel stress is expected near singularities.
Fig. 15a shows the transverse normal stresses o2, obtained with the coarse subdivision based on displace-
ment approximation in the cross-section 6 = 157.8°, where the maximum value of K occurs. The stresses are
displayed at two interfaces in the top (solid line) and bottom (dashed line) plies. The normal stresses are
seemingly discontinuous a distance of approximately 0.6H from the hole edge. Fig. 15b shows the same
stresses at all interfaces calculated using the hybrid approximation (21). The discontinuities are reduced
significantly. It is interesting to point out that the ¢% stress at the 90/45 interface obtained with coarse
subdivision in Fig. 15a may appear to have a tendency towards —oco as one approaches the interface. The
hybrid approximation shows a sharp change in sign very close to the singularity. This trend is picked up by
the approximation using fine subdivision as shown in Fig. 16a. In this case the tractions at the bottom and
top surfaces are continuous starting from 0.2H from the hole edge. The hybrid approximation (Fig. 16b)
provides traction values with imperceptible discontinuities everywhere. The hybrid stresses obtained with
the two subdivisions, Figs. 15b and 16b, are practically the same.
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Fig. 11. Transverse interlaminar normal stress at 6 = 60.3° obtained by using displacement approximation.
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Fig. 16. Transverse interlaminar normal stress at 0 = 157.3° with a fine subdivision.
10. Conclusions

(1) A method of superposition of hybrid and displacement approximations was developed to provide
accurate stress fields in the vicinity of the ply interface and the hole edge in a multilayered composite. The
asymptotic analysis was used to derive the hybrid stress functions. The displacement approximation was
based on polynomial B-spline functions.

(2) The coefficients of the singular terms in stress solution near the ply interfaces and the open-hole edge
were determined in [45/-45]; and quasi-isotropic [45/90/—45/0] laminates under mechanical and thermal
loading. Convergence studies showed that accurate values of the coefficients of the singular terms can be
obtained with the coarse out-of-plane subdivision of one sublayer per ply. It was shown that for laminates
with multiple interfaces, the influence of singular terms on adjacent interfaces is important for coarse
subdivision convergence.

(3) Converged transverse interlaminar stress components, including their singularities, were shown for
[45/-45] and [45/-45/0/90]; laminates under mechanical and thermal loading.

We should make a note of caution that even though accurate representations of singular stresses have
been obtained, their physical meaning is open to question since the assumption of homogenization (con-
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stant layer thermoelastic moduli) may be invalid in the vicinity of the free edge and ply interface, as shown
by Pagano and Rubicki (1974) and discussed by Buryatchenko and Rammerstorfer (1998).
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Appendix A

Ay = 0 cos’0 + O sin20 4+ Q) sin®0, Ay, = Q) cos’0 + (QS) + Q&)) sinfcos 6 + Q) sin®0,

Ay = O cos?0 + O sin20 + Q) sin®0,  As3 = Q%) cos’0 + OF sin20 + O sin®0),
Ay = A, Ay = A3 =43 =A4» =0,

By = (01 +0W) cos0+ (0 + O ) sin0, By = (0 + 04 cos0+ (08 + Oy ) sino,
By =By =B =Bn =B =0, B3 = By, By3 = B,

Chy = Q(;s), Cp= Q(;;), Cy = QE&)? Cy = Q§§)7
Gy =Cp, G35 =Cj =Cx=0Cy3=0.

Ply stiffness coefficients Ql(-j) s=1,...,N are contracted notations of the fourth order tensor Cffk),, used in
the text. '
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